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ABSTRACT 
This study introduces a machine learning competing risks survival analysis model aiming at 
exploring the Probability of Default component of credit risk. Due to modelling of a cumu- 
lative probability of default over time, the model is applicable to assess Lifetime Expected 
Credit Loss under the International Financial Reporting Standard (IFRS) 9 regulation for finan- 
cial institutions. Whilst most credit models focus on the default event itself, in many loan 
transactions, there is a competing event affecting risk: the possibility of the borrower pre- 
pay their debt before maturity. In this case, credit risk ceases to exist. We derive a statistical 
model that supports handling competing risks (credit risk and prepayment risk) in a machine 
learning survival analysis setup. As there is no available implemented computer package or 
library, we build the computational algorithm with subdistribution hazards using boosting as 
an ensemble method. Results of the model are generated using a dataset of credit card re- 
financing operations of a US financial institution. We observe, comparing different survival 
analysis techniques, that ComponentWise Gradient Boosting (CWGB) models showed better 
performance on both scenarios (subdistribution hazards and cause-specific models), closely 
followed by cause specific Cox Proportional Hazards, and that Gradient Boosting Survival was 
outperformed in all comparisons. The derived model is useful to address the guidelines of the 
IFRS 9 for credit risk, taking into account the context of lifetime credit exposure. 
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1. Introduction 

The study of the occurrence of a specific credit event in a lifetime context has become more 
important over the past years. The lifetime expected credit loss (Lifetime ECL), introduced by 
the International Financial Reporting Standard 9 (IFRS 9), implied the development of new 
credit models. More particularly, the models should measure the present value of potential 
losses that could arise from the default on an obligation throughout the life of the loan (BIS, 
2017). In our study, we focus on the Probability of Default (PD) component of credit risk, 
aiming at developing a model that could be applicable to IFRS 9. 

In this context, Survival Analysis (SA) techniques naturally arise as first-to-go method, 
where the objective is to study the occurrence of a certain event during a period of time. 
From a credit risk perspective, the event of interest is default during the lifetime of the loan. 
Narain (1992) first introduced the use of survival analysis in credit scoring by estimating the 
probability of default in a 24-month loan dataset using an accelerated life exponential model. 
The author states that the use of estimated survival times supporting score ratings can im- 
prove credit-granting decision. The study of Narain (1992) paved the way to many others, 
with more advanced survival methods applied to credit scoring (Dirick, Claeskens, & Baesens, 
2017). 

Technological advancements and data availability have provided new tools and informa- 
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tion to tackle the issue of estimation of the Lifetime ECL. Some of these developments relate 
to machine learning (ML) algorithms embedded in survival analysis models. These machine 
learning survival analysis mechanisms can be used in many applications, in several fields, for 
instance, to increase user retention (decreasing churn rate), to predict cross-selling opportu- 
nities (Harrison & Ansell, 2002), to leverage business strategy (Kauffman & Wang, 2001), to 
estimate the prediction of purchase of online games (Yang et al., 2019). The SA framework 
can also help financial institutions comply with regulators’ guidelines in credit risk manage- 
ment, such as the IFRS 9 (BIS, 2017). 

In addition to the advantage of allowing the estimation of a curve representing the risk 
of default through time, survival analysis can be used to model more than one event. By 
modelling mutually exclusive events as competing risks, survival analysis can be enhanced. 
From a loan credit risk context, the survival analysis adjusted by competing risks can, for 
instance, assess both default and prepayment events. Loans therefore can be analyzed by 
the event of default, which is the main concern in risk management, and also by the event 
of prepayment of the loan, situation in which credit risk ceases to exist. Both default and 
prepayment can be associated with losses. 

Default is likely to be more severe due to potential losses in interest and principal value 
of the loan. However, prepayment also may bring losses, due to unearned interest on the 
remaining installments (Li, Li, Bellotti, & Yao, 2023). In addition, since prepayment may be 
unexpected, the cash surplus may be invested at lower interest rates. Hence, the modelling 
of competing risks can enhance the understanding of potential risk-adjusted performance of 
credit portfolios, enabling better expected profit strategies for financial institutions. 

Competing risks models have already been investigated in studies concerning credit risk, 
for instance, with personal loan (Banasik, Crook, & Thomas, 1999; Stepanova & Thomas, 
2002) and mortgage applications (Agarwal, Ambrose, & Liu, 2006; Deng, Quigley, & Van Order, 
2000; Steinbuks, 2015; Thackham & Ma, 2022). In this study, we use a dataset of refinancing 
operations, which brings an interesting aspect due to borrower profile. Operations consist of 
borrowers who had already defaulted. Therefore, the study does not configure a traditional 
application of scoring model, but instead seek to contribute on understanding the context of 
debt renegotiation. 

The approach adopted in past studies mainly focused on CoxPH (Cox, 1972) and its adap- 
tation to a competing risk framework (Lunn & McNeil, 1995). However, we follow another ap- 
proach by embedding a machine learning technique based on boosting into a competing sur- 
vival analysis framework. Therefore, our study has two contributions: i) we focus our analysis 
on a dataset of renegotiated transactions of defaulted loans, and ii) we develop a novel en- 
semble model combining machine learning, more specifically, the boosting algorithm, within 
the context of competing risks in survival analysis. The competing risks relate to credit risk 
and to prepayment risk. 

The study is structured as follows. In the next section, we discuss credit risk and regula- 
tory standards that imply the use of survival analysis techniques. Then, we analyze the ad- 
justments to embed a machine learning technique within the context of competing risks in 
survival analysis. We apply the derived algorithm in a dataset of renegotiated loans of credit 
card transactions of a US financial institution to empirically assess how the proposed model 
behaves, compared with other techniques. Finally, we conclude the study indicating implica- 
tions and limitations and suggesting future research. 
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2. Related works 

The financial industry is one field where survival analysis modelling approaches are specially 
useful, as they can provide additional information to support credit scoring decisions. The 
approach allows the analysis of time-to-event data, when there is an interest in the time to 
the occurrence of an event. In credit risk, the event of interest is the default, and the time- 
to-event would represent when a particular default will likely to happen. 

Standard credit scoring methodologies express the probability of default in terms of a bi- 
nary classification problem (Li et al., 2023). The borrower is classified as “good” or “bad” 
depending on the estimated probability of default and a given threshold. In survival analy- 
sis framework, credit analysis can be translated not just to “if” a borrower will default, but 
“when” a borrower will default (Banasik et al., 1999). The possibility of building a predictive 
model that takes into account the “if” and “when” questions naturally complies with inter- 
national regulations, such as the IFRS 9. 

International Financial Reporting Standard 9 (IFRS 9) was released in 2014 and became 
effective since 2018,substituting the International Accounting Standard 39 (IAS 39). IFRS 9 
incorporated a forward-looking approach for loss allowances calculation. It requires finan- 
cial institutions to adhere to this forward-looking perspective for expected loss impairment 
models. 

The IFRS 9 indicates mechanisms to calculate provisions, by assessing ECL considering the 
entire time horizon of the financial instrument, and making adjustments in the Profit and 
Loss (P&L) account (Gornjak, 2020). The method involves checking whether there has been 
a significant increase in risk since the initial recognition. 

Considering the relevance of identify not only if but also when a default can occur, ac- 
cording to Dirick et al. (2017) early studies explored survival analysis techniques in credit risk 
investigating parametric accelerated failure time (AFT) survival methods or non-parametric 
baseline approach based on Cox proportional hazards (CoxPH) model (e.g. Banasik et al. 
(1999); Bellotti and Crook (2009); Cao (2009); Narain (1992); Stepanova and Thomas (2002, 
2001); Zhang and Thomas (2012)). Other studies introduced mixture cure mechanisms (e.g. 
Dirick, Claeskens, and Baesens (2015); Tong, Mues, and Thomas (2012) in survival analysis. 

In particular, (Dirick et al., 2017)) using credit datasets from European banks, compare 
results of different configurations of traditional survival techniques based on AFT and CoxPH 
and mixture cure models. The study identify that models with single event mixture cure and 
spline adjustment in the hazard function lead to better credit scoring. 

More recently, machine learning algorithms begin to be incorporated in survival analysis. 
For instance, adapting a boosting algorithm to Cox models, Binder, Allignol, Schumacher, and 
Beyersmann (2009) develop CoxBoost and Y. Chen, Jia, Mercola, and Xie (2013) build the 
GBMCI (gradient boosting machine for concordance index) (Bai, Zheng, & Shen, 2021). Al- 
though many applications aimed at applications in medicine and health, credit risk emerges 
naturally as an area to explore machine learning with survival analysis, due the characteristics 
of the probability of default within a given period of time. 

One example of study on credit is from Bai et al. (2021) that propose a nonparametric 
ensemble tree model (GBST) coupling survival tree models with a gradient boosting algo- 
rithm. Using two different large datasets, the results suggest that the GBST leads to better 
classification metrics when compared with other machine learning survival models such as 
random survival forest (Ishwaran, Kogalur, Blackstone, & Lauer, 2008), CoxBoost (Y. Chen et 
al., 2013), conditional inference survival forest (CIF) model (Wright, Dankowski, & Ziegler, 
2017), and DeepHit based on deep neural networks (Lee, Zame, Yoon, & der Schaar, 2018). 

Finally, in survival analysis, competing risks are relevant, since there may be events that 
preclude the event of interest from happening (Geskus, 2015). For instance, in medicine the 
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focus of the study could be related to the risk of an individual getting cancer with a specific 
treatment, death is a competing risk. In credit analysis, prepayment can be a competing risk 
of default (Li et al., 2023). As Schuster, Hoogendijk, Kok, Twisk, and Heymans (2020) sug- 
gest, biased results can emerge when survival data is analyzed without taking into account 
competing risks. 

However, even though competing events should are relevant, is a less well-known element 
of survival analysis (Schuster et al., 2020). In this context, although some papers explore sur- 
vival analysis and competing risks in credit (e.g., Agarwal et al. (2006); Banasik et al. (1999); 
Li et al. (2023); Stepanova and Thomas (2002)), there are fewer studies that embed machine 
learning techniques (e.g. XXX) 

Considering refinancing operations, many studies focus on mortgages or home equity line 
of credit (HELOC). Tracy and Wright (2016) applied Cox competing risk models to investigate 
how mortgage payment reduction from the Home Affordable Refinance Program (HARP) af- 
fects the probability that the borrower defaults after having refinanced. The authors suggests 
that refinancing can have a positive impact in loss mitigation. 

J. Chen, Xiang, Yang, et al. (2018) analyze the risk of re-default on Federal Housing Admin- 
istration (FHA) modified loans. Authors finds suggests that modified loans are more likely to 
default compared to identical loans with no modifications. There has been few studies on the 
assessment of expected losses on refinancing operations of usual credit lines. In our study, we 
focus on credit card refinancing exploring a boosting approach embedded in survival analysis 
techniques with competing risks. 

 
3. Machine Learning Survival Analysis for Competing Risks 

In this study, we apply machine learning survival analysis models that takes into account 
competing risks. We incorporate a boosting mechanism to assess competing risks in a survival 
analysis setting. Although in this study we apply the method to credit risk and prepayment 
risk, the proposed model is suitable for any two competing risks. 

In our study, we aim at analysing credit risk loans that have two relevant elements: (i) the 
borrower default can occur in any moment until maturity and (ii) the borrower can prepay 
the loan in any moment until maturity. In the occurrence of any of the two events, potential 
credit risk ceases to exist, as the risk of not complying with the loan has been realized with 
the default or there is no credit risk anymore, as the loan was fully paid in advance. 

 
3.1. Survival Analysis 

Changes resulting from the new regulation implied adaptations in the estimation of PD, 
which is one of the most important risk component in credit risk analysis (Vaněk & Hampel, 
2017). More specifically, the need to calculate Lifetime ECL requires a method to analyze 
credit risk not only on a given time, for instance, at maturity or after a year, but also through- 
out all the period of the loan. 

In this context, Survival Analysis methodology can be considered a feasible and appeal- 
ing approach, since it allows to tackle the default problem from a different perspective. SA 
models allows to assess whether as well as when a default will occur (Banasik et al., 1999). 

The focus of SA methods is on the time T until an event occurs (e.g., default). Observations 
that did not experience the specified event are called censored observations. Usually SA data 
are represented by a pair of random variables (T, C). In the absence of competing risks, the 
censoring variable C takes the value 1 if the event of interest was observed or 0 if it is a 
censored observation. When C = 1, T refers to the time of occurrence of the event of 
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interest and when C = 0, T refers to the time at which the observation was censored. 

The function S(t) represents the probability of not having experienced a given event until 
time t (i.e., the probability to survive until time t) and is given by: 

 
S(t) = P (T > t) (1) 

 
Therefore, the cumulative distribution is defined as the probability of an observation do 

not survive until time T , that is, F (t) = 1−S(t) (Colosimo & Giolo, 2006) and the probability 
density function is f (u) = −  d  S(u) (Dirick et al., 2017). 

Additionally, the hazard function, which represents the instantaneous risk, is expressed as: 

 

h(t) = lim P (t ≤ T < t + δt | T ≥ t) 
= 

f (t) (2) 
δt→0 δt S(t) 

which can also be written in terms of the survival function (??) and the probability density 
function (??). From these equations, the cumulative hazard function can be defined as: 

 

 
H(t) = 

t 
h(u)du = 

∫ t f(u) 
 
du = 

∫ t d{1 − S(u)} dt = −log{S(t)} (3) 
0 0 S(u) 0 S(u) 

Since S(t) = exp−H(t), there is an one-to-one correspondence between the hazard rate 
h(t) and the cumulative risk distribution F (t) (Andersen & Keiding, 2012). 

 
3.2. Cox Proportional Hazard 

The Cox Proportional-Hazards model (Cox, 1972) allows to incorporate covariables informa- 
tion into a censored regression model and is one of the most traditional approaches based on 
time-to-event techniques. It consists of a semi-parametric model for the model is composed 
by two components: a non-parametric base hazard λ0 and a parametric component g(Xβ). 
The parametric component is usually used as g(Xβ) = exp(Xβ) (Colosimo & Giolo, 2006). 
Therefore, the model is given by: 

 

λ(t) = λ0(t) exp(Xβ) (4) 

where xi is a vector of observed data and β is a p × 1 vector of parameters for each covari- 
able. Proportional-hazards comes from the assumption that the ratio of failure rates among 
two individuals is constant over time. For instance, considering λi(t) and λj(t) representing 
the failure rate of two individuals at time t, it follows that: 

 
λi(t) = 

λ0(t) exp(xiβ) 
= exp(x β − x β), (5) 

λj(t) λ0(t) exp(xjβ) i j 

where the ratio of failure rate is constant and independent of time. For parameter estima- 
tion, Cox (1972, 1975) proposed a partial likelihood without the semi-parametric component. 
The partial likelihood is a product of all terms associated to different failure times, i.e.: 

∫ 
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Y
 

exp(Xβ) 
!δi 

L(β) = 

 
, 

 

i=1 

Σ
j∈R(ti) exp(Xβ) 

(6) 

where δi is the censoring indicator, taking value δi = 1, if an event is observed and δi = 0, 
in case of censoring. The risk set R(ti) is composed by individuals who have not yet failed 
until time ti. Values of β that maximize the partial likelihood function are obtained by solving 
the system defined by U (β) = 0, where U (β) is the score vector of first-order derivatives of 
l(β) = log(L(β)). 

 
3.3. Competing Risks 

The approach based on competing risks is adequate when there are two mutually exclusive 
events, i.e., the occurrence of one event implies the non-occurrence of the other. The (T, C) 

can be extended to C = {0, 1, 2, ..., k} where k ≥ 2 types of events are possible. When com- 
peting risks are present, the Cumulative Incidence Function (CIF ) represents the probability 
of occurrence of a specific type of event before time t. Considering j competing events, the 
CIF for cause j is defined as (Frydman & Matuszyk, 2022): 

 

Fj(t) = P (T ≤ t, C = j) = 
t 

P (T = t, C = j)du = 
0 

t 

fj(u)du (7) 
0 

Thus, the probability that any event takes place before time t, is the sum of all j CIF : 
 

 
k k 

F (t) = P (T ≤ t) = 
Σ 

P (T ≤ t, C = j) = 
Σ 

Fj(t) (8) 

 
When dealing with competing risks in Cox-PH regression models, there are two main meth- 

ods for estimating CIF (Austin, Steyerberg, & Putter, 2021): (i) modeling the cause-specific 
hazard by considering each event separately and combining the models to estimate CIF 
(Kalbfleisch & Prentice, 2011), and (ii) modeling the Fine-Gray (Fine & Gray, 1999) subdis- 
tribution hazard function, which enables a direct way for modelling the effect of covariates. 
Each method have a defined hazard function for a specific event type: the cause-specific haz- 
ard function (9) and the subdistribution hazard function (9) (Austin & Fine, 2017): 

 

hcs(t) =  lim P (t ≤ T < t + ∆t, C = j|T ≥ t) (9) 
j 

∆t→0 ∆t 

 

hsd(t) =  lim P (t ≤ T < t + ∆t, C = j|T ≥ t ∪ (T < t ∩ C /= j)) (10) 
j 

∆t→0 ∆t 

The cause-specific hazard function is the instantaneous risk of event j in individuals who 
have not experienced any type of event until time t. The subdistribution hazard function, is 

∫ ∫ 

j=1 j=1 
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the risk of event j considering individuals who have not experienced the specific j event until 
time t (Austin & Fine, 2017). In this sense, the subdistribution hazard function proposed by 
Fine and Gray (1999) take into account individuals who have not experienced the primary 
event of interest, but, have experienced a competing event. 

Austin, Lee, and Fine (2016) suggest that, on one hand, subdistribution hazard models are 
better suited for clinical prediction models and risk-scoring systems, where there is a natural 
interest in estimating the absolute incidence of the primary event. On the other hand, cause- 
specific hazard models are more suitable when the objective is to assess epidemiological 
questions of etiology (Austin et al., 2016). Furthermore, the former estimates cause-specific 
hazard functions for each competing event to derives de CIF from there, while the latter 
allows directly estimate the CIF Frydman and Matuszyk (2022). 

Fine and Gray (1999) proposes an adaptation for Cox partial likelihood, by changing the 
risk set Rj and adding weights wj. The adapted likelihood is given by: 

 

m 

L(β) = 
i=1 

exp(xiβ) 
 

 

j∈Ri 
wijexp(xjβ) 

 
(11) 

where Ri consists of observations that did not experience the primary event, even if they 
have experienced a competing risk event. The risk set is defined as (Pintilie, 2006): 

 

Rj(m) = [j; Tj ≥ m or (Tj ≤ m and the subject has experienced 

a competing risk event)]. 
(12) 

Additionally, the observations on the risk set are weighted by: 

Ĝ (ti) wij = 
Ĝ(min(t , t )) 

(13)
 

i  j 

where Ĝ is the Kaplan-Meier estimate of the survivor function of the censoring distribution 
(Pintilie, 2006). The weight goes to zero as the distance between the time point ti and the 
time recorded for the competing risk event increases. Thus, observations that experienced a 
competing risk event do not participate fully in the likelihood (Pintilie, 2006). 

 
3.4. Boosting algorithm 

Boosting is an ensemble method that sequentially fits models to the data, in which each sub- 
sequent model places more emphasis on the observations that were misclassified by the pre- 
vious models (Freund & Schapire, 1997). J. H. Friedman (2001) proposes Gradient Boosting 
Machine (GBM), a boosting framework that generalizes loss functions for regression prob- 
lems. The GBM algorithm is depicted in Enum1 (Ridgeway, 1999): 

J. Friedman, Hastie, and Tibshirani (2000) connects boosting with well-known statis- 
tical principles (e.g. additive modeling and maximum likelihood) and demonstrates how 
the method relates to algorithms used for fitting linear models, such as IRLS (Iteratively 
Reweighted Least Squares). 

Ridgeway (1999) builds a generalization of boosting algorithms for the exponential family 
and proportional hazards regression models. The proposed generalization is based on Fisher 
scoring (Fine & Gray, 1999), a variant of the Newton-Raphson optimizer. The author illustrates 
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Σn Ψ(yi, ρ) 
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i i   

n 

N 

Σ 

∂F (xi) 

δi F (xi) − log  I(tj ≥ ti)eF (xj )  (14) 
i=1 j=1 

For m in 1, · · · , M do 
i=1 

1. Compute the negative gradient as the working response 

 

z = −   ∂  Ψ(y , ρ) 

 
2. Fit a regression model on zi given covariates xi 

3. Choose a gradient descent step 

ρ = minΨ(yi, F̂ (xi) + ρf (xi)) 

4. Update F (x) estimate as 

F̂ (x) ← F̂ (x) + ρf (x) 

 

Enum 1: J. H. Friedman (2001) Gradient Boost algorithm 

 
adaptations of the algorithm for generalized linear model under a framework proposed by 
Nelder and Wedderburn (1972). 

For proportional hazards regression models, the illustration is made by allowing likelihood 
based loss functions in Friedman’s gradient boosting machine. Thus, we can make use of 
Cox partial likelihood for fitting censored data. Considering the ideas described above, and 
that boosting fits nonlinear regression models (Ridgeway, 1999), Enum2 can be adapted for 
censored data by searching F (x) to maximize Cox’s log-partial likelihood (Ridgeway, 1999), 

by replacing Ψ(y, F ) with the −logP L(F |t, δ, x), where: 

Σ 
 ,

Σn 
 

 

Therefore, the negative gradient is given by: 

 

 
z = δ — 

Σ 
δ I(t ≥ t ) eFˆ(xj )  

(15) 
i i j i 

j=1 

j N 

k=1 I(tk ≥ tj )eFˆ(xk ) 

Following the same steps proposed in Enum1, the algorithm for boosting CoxPH for cen- 
sored data model is illustrated in Enum2 (Ridgeway, 1999): 

Gradient Boosting methods can also operate as a regularization framework (Bühlmann & 
Hothorn, 2007). The core idea relies on a stepwise optimization of a function F (.) in function 
space, by minimizing a loss function (Binder & Schumacher, 2008). This approach has been 
user for survival context, using Cox negative partial log-likelihood as loss function (Binder & 
Schumacher, 2008). 

F (xi)=Fˆ(xi) 

logP L(F |t, δ, x) = 



Initialize F̂ (x) = minρ 
Σn Ψ(yi, ρ) 
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j=1 N 

For m in 1, · · · , M do 
i=1 

1. Compute the negative gradient as the working response 

 

zi = δi − 
ΣN δjI(ti ≥ tj) Σ 

 

eFˆ(xj ) 

I(t ≥t )eFˆ(xk ) 

k=1 k j 

2. Fit a regression model on zi given covariates xi 

3. Choose a gradient descent step 

ρ = minΨ(yi, F̂ (xi) + ρf (xi)) 

4. Update F (x) estimate as 

F̂ (x) ← F̂ (x) + ρf (x) 

 

Enum 2: J. H. Friedman (2001) Gradient Boost algorithm 

 
With componentwise least squares as base learner, in each m step, the negative gradient 

of the loss function is evaluated for the current estimate Fm(x; βˆm) (Binder & Schumacher, 
2008). For each predictor variable, a simple linear regression is fitted to the gradient. Then, 
the coefficient of the predictor variable with the smallest sum of squares is updated. This 
can lead to many of the estimated coefficients being zero, resulting in sparse fits resembling 
Lasso-like approaches (Binder & Schumacher, 2008). 

 
3.5. Boosting algorithm with competing risks 

Considering Ridgeway (1999), a natural way to incorporate competing risks into a boosting 
framework is to replace Ψ(y, F ) with an adapted log-partial likelihood derived from (11). 
Binder et al. (2009) proposed a competing risk boosting framework for high-dimensional 
data for fitting proportional sub-distribution hazards models. The study involves a context 
in which the number of covariates is greater than the number of observations, and a sparse 
vector of estimated parameters is desirable. With this, the authors implement a component- 
wise boosting approach using penalized maximum partial likelihood, incorporating previous 
boosting steps as an offset. Another adaptation occurs in a definition of sets of mandatory 
and optional covariates. Before each boosting step, parameters referring to the mandatory 
covariates are updated simultaneously by one maximum partial likelihood Newton–Raph- 
son. In each boosting step, only one parameter corresponding to the optional covariates is 
updated. 

Applications in credit risk scoring generally involve models with greater degrees of free- 
dom on parameters, with the number of covariates being smaller than the number of obser- 
vations. In this way, we proceed without the penalty term and restrictions on the covariates. 
Therefore, we can incorporate information of competing risks by considering the adapted 
likelihood proposed by Fine and Gray (1999). Hence, we wish to maximize the following log- 
partial likelihood: 



10 

 

 

n 

  

n 

N 

i=1 

δi  F (xi) − log 
j∈Ri 

wijeF (xj )  (16) 
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where j ∈ Ri if (tj ≥ ti) or (tj ≤ ti and individual j experienced a competing risk event). 
Taking the derivative with respect to F (xi), leads to: 
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Similar to (15), the the negative gradient computed as the working is responses is given 
by: 

 

 
z = δ — 

Σ 
δ I(i ∈ R ) Σ 

 

wije F
ˆ(xi) 

 

 
(18) 

The final boosting algorithm that allows to incorporate information on secondary events 
is given in Enum3 by: 

 

Initialize F̂ (x) = minρ 
Σn Ψ(yi, ρ) 

For m in 1, · · · , M do 

1. Compute the negative gradient as the working response 
 

ΣN w 

 

eFˆ(xi) 

  
 

 

where wij 
 Ĝ(ti )  

Ĝ(min(ti,tj )) 

2. Fit a regression model on zi given covariates xi 

3. Choose a gradient descent step 

ρ = minΨ(yi, F̂ (xi) + ρf (xi)) 

4. Update F (x) estimate as 

F̂ (x) ← F̂ (x) + ρf (x) 

 

Enum 3: Boosting algorithm for Fine-Gray adapted likelihood 

With a similar approach, Binder et al. (2009) fits subdistribution hazards models under a 

j∈Ri 
w ji eF (xj ) 

j=1 

w kj e
F (̂xk ) 

= 

logF G(F |t, δ, x) = 

(17) 

i 

k∈Rj 
w eFˆ(xk ) 

zi = δi − 
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boosting framework for sparse data. The authors adapted a componentwise likelihood-based 
boosting (Binder & Schumacher, 2008) for competing risks. 

Boosting has been shown to improve the prediction accuracy of survival analysis models, 
particularly for high-dimensional data (Mayr, Binder, Gefeller, & Schmid, 2014). However, the 
interpretability of the GBM can be challenging, as it combines many weak learners to make 
the final prediction. Therefore, it is important to carefully consider the trade-off between 
model accuracy and interpretability when using boosting in survival analysis. 

 
4. Data and Method 

This study analyzes data consisting of credit card refinancing operations of a US financial insti- 
tution. Therefore, in contrast to traditional credit scoring applications, this research explores 
a different profile of borrowers. Instead of measuring the likelihood of a borrower default 
on a new credit operation, we model the probability of default in refinancing borrowers who 
had already been delinquent in their credit card debt some time in the past. As a result, 
our research advances knowledge of the credit risk phenomena in the context of a different 
borrower profile, i.e., a previous defaulter. 

Due to confidentiality and strategic issues, we have access to refinancing operations that 
span from January 2014 to December 2015. Therefore, the outdated database precludes the 
disclose of recent information, such as default rate, but allows the identification of outcomes, 
based on real-world data, of the use of machine learning models embedded in survival anal- 
ysis techniques. 

Dataset consists of 118,967 operations with a time-maturitie of 36 months. We selected 
operations starting until 2014 and 2015 (102,538) to train the model and separate those 
starting in 2016 (10,230) for an out-of-time evaluation. In order to reduce computational 
time we selected a 10% sample of operations that started in 2014 and 2015, leaving the final 
train dataset with 10,230 observations. 

Dataset used during modeling considered the following information variables: 

(1) Loan amount: the listed amount of the loan applied for by the borrower. If at some 
point in time, the credit department reduces the loan amount, then it will be reflected 
in this value. 

(2) Interest rate: interest rate of the loan. 
(3) Installment: the monthly payment owed by the borrower. 
(4) Employment length: employment length in years, ranging from zero to ten, where zero 

means less than one year and ten means ten or more years. 
(5) Home ownership: the home ownership status provided by the borrower during regis- 

tration or obtained from the credit report (rent, own or mortgage). 
(6) Annual income: the self-reported annual income provided by the borrower during reg- 

istration. 
(7) Verification status: indicates whether income was verified or not. 
(8) Dti: A ratio calculated using the borrower’s total monthly debt payments on the total 

debt obligations, excluding mortgage and the requested LC loan, divided by the bor- 
rower’s self-reported monthly income. 

(9) Total acc: The total number of credit lines currently in the borrower’s credit file. 
(10) Earliest credit line: time since borrower’s earliest reported credit line was opened. 
(11) Loan percentage to income: a ratio computed as the loan amount on the annual in- 

come, reflecting the share of commitment of income with the loan. 
(12) Time to default or repayment (in months). 
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(13) Default status: binary variable with 1 (default) or 0 (non default). 
(14) Repayment status: binary variable with 1 (default) or 0 (non default). 

 
5. Results 

In this section we compare results provided by fitted models. We consider loss functions 
based on cause-specific (CS) and subdistribution hazard (SH) models. For CS models the sec- 
ondary risk (early payment event) is assumed to be censored. For SH models, individuals with 
prepayment event before time t remain in the risk set with an associated weight. 

In credit risk context, ignoring the competing risk event of prepayment results in upwardly- 
biased estimate of the cumulative probability of default (Frydman & Matuszyk, 2022). In this 
way, we first evidence the importance of competing risk modeling by comparing each survival 
model as if early repayment was not considered as secondary risk. 

Figure 1 shows, for each model, the estimated curve of cumulative probability of default 
from a hypothetical renegotiation with 12% interest rate, assigned “rent” regarding owner- 
ship status and taking median values on all other covariates. For cause-specific models this is 
the Cumulative Incidence Function, as for the other models, it is represented by 1-predicted 
survival function. This shows that cause-specific models leads to a lower curve of cumulative 
probability of default with the same predictive power. 

We evaluate predictive performance on both a test dataset and an out-of-date dataset. 
For performance comparison we compute three metrics commonly used to assess good- 
ness of fit on survival models. The Concordance Index (Harrell, Califf, Pryor, Lee, & Rosati, 
1982), which measure a rank correlation between estimated risks and observed times. The 
Integrated Brier Score (IBS), showing accuracy risk predictions over time. The Dynamic AUC 
providing a measure of calibration over time, by distinguishing observations who fail by time 

ti ≤ t from those failing after time ti > t. 
Table 1 displays out-of-sample and out-of-time results. Models with a ComponentWise 

Gradient Boosting approach showed the best results, closely followed by Cox-PH. Gradient 
Boosting Survival Analysis was outperformed and every comparison. 

Table 1. Results 
 

Model 
Out of sample Out of time 

 
 
 
 
 
 

 
In an out-of-sample test, adaptation for subdistribution hazards showed slightly better re- 

sults than cause-specific, with a C-index of 0.6462 (HS) over 0.6447 (CS), closely followed by 
CoxPH (0.6441) and GBSA (0.6313). IBS showed the same behavior, demonstrating good cali- 
bration performance for all models. Out-of-sample dynamic AUC (Figure 2) for CWGB also 
show competitive numbers with similar values for SH (0.6607) and CS (0.6602), both ap- 
proaches presenting better results than CoxPH (0.6574) and GBSA (0.6412). 

In operations starting in 2015 a reversed behavior is seen among CWGB approaches, with 
CS with slightly higher values than SH. However, both models outperformed Cox-PH and GBSA 

 C-Index IBS AUC  C-Index IBS AUC 

SH CWGB 0.6462 0.0665 0.6607 
 

0.6873 0.0961 0.6975 
CS CWGB 0.6447 0.0664 0.6602  0.6887 0.0968 0.7009 
CS CoxPH 0.6441 0.0661 0.6574  0.6711 0.0958 0.6789 
CS GBSA 0.6313 0.0666 0.6412  0.6536 0.0964 0.6615 

 



 

 

 

 

 
(a) 

 

(b) 
 

(c) 

Figure 1. Cumulative probability of default comparison when ignoring prepayment event for (a) CWGBSA (b) GBSA and (c) 
Cox-PH. 13 
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on all metrics considered. Out-of-time dynamic AUC (Figure 3) shoes greater disparitie with 
CWGB (0.709 CS and 0.6795 HS) over CoxPH (0.6789) and GBSA (0.6615). 

In general, we observe that ComponentWise Gradient Boosting models showed better per- 
formance on both scenarios, closely followed cause specific Cox Proportional Hazards, and 
Gradient Boosting Survival was outperformed in all comparisons. The loss function adapta- 
tion to subdistribution hazards on CWGB showed comparative performance. 

Aside from predictive power, it is also interesting to analyze default prediction. This can 
be achieved by comparing the cumulative incidence functions (CIFs), which provides an idea 
of the probability of failure (Pintilie, 2006). We analyze predicted curves for loans with 7.5% 
(Figure 4), 10% (Figure 5) and 12% (Figure 6) interest rate, with home ownership status as- 
signed as “rent” ad ‘mortgage” and taking the median value on all other covariates. A higher 
curve is estimated by SH CWGBSA in all scenarios. While SH CWGBSA presents the same cu- 
mulative curve for both status of home ownership (keeping interest rate constant), it appears 
to be sensitive to interest rate level, with significant increase on the cumulative probability 
as higher rates are considered. This could be a reflection of the penalized approach lasso- 
like, leading to a prediction made by few covariates. Cause-specific models provides lower 
estimated curves and more mixed behavior of different interest rates and home ownership 
status. CS CWGBSA and CS GBSA presents a similar behaviuor, providing higher curves for 
“mortgage” when interest rate is 7% , and with a decreasing impact of home ownerhsip as 
higher rates are considered (with CS GBSA curve higher then CS CWGBSA in all scenarios). 
For CS CoxPH higher curves are observed for “rent” than for “mortgage” status, specially 
for higher interest rates. For instance, with 12% interest CS Cox-PH has the lowest curve for 
“mortgage” and the second highest for “rent”. 

 

 

 
Figure 2. Out-of-sample cumulative Dynamic AUC 
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Figure 3. Out-of-time cumulative Dynamic AUC 

 
 
 
 
 
 
 
 
 

 
Figure 4. Cumulative Probability of default for an operation with interest rate of 7% and home ownership assigned as (a) Rent 
and (b) Mortgage 

 

(a) (b) 
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Figure 5. Cumulative Probability of default for an operation with interest rate of 10% with home ownership assigned as (a) 
Rent and (b) Mortgage 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Cumulative Probability of default for an operation with interest rate of 12% and home ownership assigned as (a) 
Rent and (b) Mortgage 

(a) (b) 
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6. Conclusion 

In this paper, we introduced a method to assess competing risks in credit portfolios, embed- 
ding machine learning techniques within a survival analysis framework. More specifically, the 
paper contributes to the discussion of lifetime expected credit loss required by the IFRS 9. 

We explore a competing risk approach with subdistribution hazards under a boosting 
framework using component wise least squares as base estimators. Focusing on credit analy- 
sis, differently from studies applying a similar framework in other areas (Binder et al., 2009), 
we used non penalized loss functions, since it is uncommon to have more covariables than 
observations in loans context. 

We derive the statistical properties and define a computational algorithm of the ensemble 
boosting mechanism adapted to incorporate computing risks (credit and prepayment risks). 
We also computationally implement the machine learning competing risks survival analysis 
model, as there is no available preprogrammed package or library. 

We showed that, in a dataset of refinancing operations of credit card loans of a US financial 
institution, adapting the loss function to include competing risks during estimation on the CIF 
leads to comparable results in relation to outputs of cause-specific models. 

Future studies could test different base learners in the boosting framework as well as in- 
vestigate comparative results in other credit datasets. In our study, we focused on one com- 
ponent of credit risk: Probability of Default (PD). However, the implementation of techniques, 
compatible with IFRS 9, aiming at modelling the other components (Loss Given Default - LGD 
and Exposure at Default EAD) over time, could also be relevant. Finally, other studies could 
explore bias and fairness in models based on machine learning techniques applied to com- 
peting risks in credit assessment. 
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