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Using Machine Learning to Separate Good and Bad Equity
Mutual Fund Managers: Evidence from Brazil

Abstract

We contribute to an emerging literature that shows that Machine Learning algorithms can
discern between equity mutual funds that will outperform and underperform. In addition, we
present evidence from the Brazilian equity mutual fund industry and show that using XGBoost,
funds with higher predicted abnormal returns outperformed the funds with lower predicted ab-
normal returns by almost four times while being 15% less risky. Finally, we also test nine different
ML algorithms and four classical methods and present evidence of ML models’ superiority.
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1 Introduction

According to a report from the Brazilian Association of Financial and Capital Market Institutions
(ANBIMA (2022)), combined, all the Brazilian investment funds had close to US$ 1.4 trillion in assets under
management. From this total, about 6.5% are allocated to the 4000 existing equity mutual funds. Even
though it is a small proportion of the whole industry, equity mutual funds attract the interest of investors
who want to diversify their portfolios and have financial exposure to the stock market.

When an investor decides to buy a share of an equity mutual fund, he wishes to select the fund
(or group of funds) that will deliver the higher return with the lowest possible risk. John Bogle, founder,
and CEO of The Vanguard Group, in a 1992 paper (Bogle (1992)), wrote that, when selecting equity mutual
funds, it is virtually impossible to pick the winners in advance. He also wrote that “if (and I underscore
the “if") there is a systematic way to identify equity fund winners [...] it would surely be in this new era
of the microcomputer". Thirty years after this statement, an emerging financial literature uses the recent
developments in Machine Learning, Artificial Intelligence, and computational power to predict which equity
mutual funds will deliver the best and worst performances in the future.

DeMiguel et al. (2021) note that machine learning algorithms deliver an edge for predicting the
five-factor alpha (Fama and French (2015)) because they allow for nonlinearities and interactions between
the variables of interest. In addition, they show that decision-tree methods (gradient boosting and random
forests) deliver higher alphas when compared to linear methods (elastic net and OLS). Finally, they suggest
that an approach that uses a single or just a few fund characteristics tends to be dominated by approaches
that use multiple of them.

In contrast, using a feedforward neural network, Kaniel et al. (2022) show that fund momentum
and flow are the only variables needed to differentiate funds with higher future Cahart abnormal returns
(Carhart (1997)) from those with lower ones. Consequentially, the authors reveal that the characteristics of
the stocks that funds hold, conditioned on fund momentum and fund flow, are not useful metrics to tell good
and bad equity mutual fund managers apart. Furthermore, they show that fund momentum and flow have
much greater predictive power when investor sentiment is high. As they point out, linear models cannot
grasp this kind of relationship.

In consonance with these previous works, Li and Rossi (2020) present evidence that indicates that
boosted regression trees significantly outperform traditional linear methods. To support this claim, they
construct long-short portfolios that buy (sell) the top 10% funds with the highest (lowest) predicted future
performance. This strategy delivers an annual excess return of 6.68% and an even bigger risk-adjusted return
of 7.46%, both statistically significant at the 1% level. The authors also find that out of the ten characteristics
with the highest predictive power, seven are related to trading frictions and three to momentum.

These works are part of a bigger trend of applying machine learning to uncover different rela-
tionship structures between financial variables. Goodell et al. (2021) present an extensive review of the
theme. As they point out, there are three main thematic structures of Artificial Intelligence (AI) and Ma-
chine Learning (ML) research in finance. Our paper is in the portfolio construction, valuation, and investor
behavior category. The other two categories refer first to financial fraud and distress and then to sentiment
inference, forecasting, and planning.

In this paper, as in previous works, we will focus our attention on trying to discern, in advance,
equity fund managers that will outperform from those that will underperform. For that, we use a conventional
stepwise chronological data split. This means that for every month between 2008-01-01 and 2021-12-31 we
will train our XGBoost model (Chen and Guestrin (2016)) on the data available until that month and then
we will make predictions for the upcoming month. Then, we will rank the funds based on the predictions
and create portfolios that go long (short) in the funds with the highest (lowest) predictions. For robustness,
we will also present the portfolio results for different holding periods.

That explained, we need to justify why we are choosing XGBoost over other Machine Learning
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Algorithms and what is our dependent variable - the metric that will define what is under and outperformace.

First, we use XGBoost because it is computationally efficient (Chen and Guestrin (2016)) and
has been successfully used in various domains and ML problems. Fauzan and Murfi (2018), for example,
show that XGBoost gives better results than other methods like AdaBoost, Random Forest, Stochastic
GB, and Neural Networks for insurance claim prediction. In addition, Giannakas et al. (2021) show that
XGBoost performs better than a Deep Neural Network (DNN) with four hidden layers when predicting
teams’ performance. Finally, Zhang et al. (2020) shows that XGBoost outperforms Support Vector Machine,
Random Forest, and Logistic Regression for transaction fraud detection. Even though we have a strong
argument for using the XGBoost algorithm, we will also present the main result for other ML algorithms.

Second, the metric that will be used to define which funds underperformed and which outper-
formed is the Cahart four-factor abnormal return, as in Kaniel et al. (2022). This metric is the difference
between the funds’ realized return in month t and its expected return at the same time. The expected return
is the inner product of the vector containing the factors’ returns at month t and the vector containing the
funds’ exposure to each factor. The factor exposures are obtained from the regression of the funds returns
in excess of the risk-free rate against the Cahart four factors (market, size, value, momentum) from t− 1 to
t− 12.

With our dependent variable already defined, we present our explanatory variables. Initially,
we divide the independent variables into return-based and characteristics-based metrics. We selected eight
metrics for the first group (Alpha, CVaR, Modified Information Ratio, Tracking Error, and the four Carhart
(1997) betas). We applied them to three periods based on momentum literature (short-term reversal, short-
term momentum, and momentum). Furthermore, there are ten variables in the characteristic-based group.
These variables are AUM, flow-related, number of shareholders, age, and dummies indicating if the fund is
open, if it can take on leverage, if it is a Fund-of-Funds (FoF), and if it is an exclusive one. In total, the are
34 independent variables.

The rest of the article is structured as follows: (i) first, we present the data and features used;
(ii) then, we present the basic idea of how XGBoost and the other ML models considered work; (iii) next,
we show the results; (iv) finally, we conclude and make remarks about possible improvements.

2 Data

Our data regarding equity mutual funds were extracted from Economatica, a Brazilian financial
data provider. In addition, we get data for factor portfolios (market, size, value, and momentum) and the
Brazilian risk-free rate from NEFIN-USP. Finally, from Bloomberg, we extract data about IBrX, a Brazilian
market index that tracks the stock performance of 100 large companies listed on B3, the Brazilian stock
exchange. All this data is in daily frequency and starts on 2004-02-01 and ends on 2021-12-31. It is also
valid to state that the fund’s returns are net of fees.

Even though our data start at the beginning of 2004, we only start making predictions for 2008.
We do that to ensure we have enough data to train our model properly. In addition, we need 12 months of
data to create the first set of features. In the end, the data from February 2005 to December 2007 is used
only for model training. In total, the predictions for January 2008 use almost 3900 observations.

It is also essential to define the criteria for selecting a fund for our analysis. The first is that it
needs to have existed for at least 12 months. In addition, during the estimation and evaluation period, it
must have data for at least 90% of the trading days.

Because we have some outliers in the funds’ returns, we apply a simple rule: if the return (in a
single day) is smaller than -80% or bigger than 80%, we transform this return into a missing value. Out
of more than three million observations, we transform 79 in missing values. In future works, more robust
methods for outlier detection could be used.
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Table 1: Data Summary Statistics

1st Qu. Median Mean 3rd Qu.

# Funds 315 650 590.68 779

Return-based

Abnormal Return -0.01 0.01 0.01 0.02
MIR (STM) 0 0 0.08 0.14
CVaR (STM) -0.03 -0.02 -0.02 -0.01
Track Error (STM) 0 0.01 0.01 0.01
Alpha (STM) 0 0 0 0
Beta-Market (STM) 0.55 0.77 0.73 0.95
Beta-Size (STM) -0.01 0.12 0.15 0.28
Beta-Value (STM) -0.23 -0.06 -0.07 0.09
Beta-Momentum (STM) -0.1 0.04 0.03 0.18
MIR (Mom.) 0 0 0.03 0.05
CVaR (Mom.) -0.04 -0.03 -0.04 -0.02
Track Error (Mom.) 0.01 0.01 0.01 0.01
Alpha (Mom.) 0 0 0 0
Beta-Market (Mom.) 0.6 0.78 0.75 0.94
Beta-Size (Mom.) 0.05 0.13 0.15 0.23
Beta-Value (Mom.) -0.14 -0.05 -0.06 0.03
Beta-Momentum (Mom.) -0.03 0.04 0.04 0.12
MIR (STR) 0 0 0.08 0.14
CVaR (STR) -0.03 -0.02 -0.02 -0.01
Track Error (STR) 0 0.01 0.01 0.01
Alpha (STR) 0 0 0 0
Beta-Market (STR) 0.56 0.77 0.74 0.95
Beta-Size (STR) -0.01 0.12 0.15 0.28
Beta-Value (STR) -0.23 -0.06 -0.07 0.09
Beta-Momentum (STR) -0.1 0.04 0.03 0.18

Fund’s Characteristics

AUM 13047.28 44552.84 168107.83 141380.7
Inflows 10 4062.01 52572.17 30761.47
Outflows 155.94 5000 38986.6 28268.1
% Flow -0.14 0 24570.03 0.25
# Shareholders 2 8 1226.06 63
Leveradge 0 1 0.51 1
Open 1 1 0.98 1
FoF 0 0 0.49 1
Exclusive 0 0 0.09 0
Age 2.26 4.25 5.72 7.6

STM, Mom, and STR refer to the time frame division explained in section 2.2.1. The acronymous means
short-term momentum, momentum, and short-term reversal, respectively. In addition, MIR and MSR refer,
respectively, to the modified Information and Sharpe Ratio proposed by Israelsen et al. (2005)
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2.1 Dependent Variable

First, we formally define our dependent variable. As in Kaniel et al. (2022), this will be the fund’s
abnormal return (Rabn

i,t ). We begin by writing,

Ri,t−12:t−1 = αi + β′
iFt−12:t−1 + ϵi,t−12:t−1

In this case, Ft−12:t−1 is the matrix containing the daily returns of the Carhart (1997) factors
(Market, SMB, HML, WML), and βi is the vector containing the fund’s i factor loadings. Ri,t−12:t−1 is the
fund’s after-fee returns.

Finally, the abnormal return of the fund i at time t will be:

Rabn
i,t = Ri,t − βiFt

In summary, the fund’s abnormal return is the difference between the realized return at time t
and the expected return for time t based on the factor loadings from the previous periods (t− 12 until t− 1)
and the factors’ returns at time t.

2.2 Independent Variables

We can divide our explanatory variables into two main groups: the ones based on the returns and
the others based on fund characteristics. Summary statistics for all these variables are presented in Table 1.

2.2.1 Return Based

First, following a similar procedure used by Kaniel et al. (2022), we consider three time frames
based on the momentum literature. However, unlike Kaniel et al. (2022), that just used this time frame for
the variables related to momentum, every return-based metric will have one version for each time frame.
These periods are: (i) short-term momentum (t−2); (ii) short-term reversal (t−1); momentum (t−12 until
t− 3). The first two periods are based on Jegadeesh and Titman (1993) and the third on Fama and French
(1996).

Now that we have established the time frames, we present the return-based variables. First, there
are those related to the regression of the fund’s return against the Cahart four-factor model (Carhart (1997));
these are the alpha (intercept) and the betas related to the market, size, value, and momentum factors. In
addition, we have the Conditional VaR (Rockafellar et al. (2000); Bali et al. (2007)), tracking error, and the
modified information ratio (Israelsen et al. (2005)).

Table 1 presents the summary statistics of the variables. First, it is interesting to see that, unlike
returns, the abnormal return has a mean different from 0. In fact, both the mean and the median round to
1% per month. Another thing that deserves observation is that most funds have positive exposure to size
and momentum and negative exposure to value.

2.2.2 Funds’ Characteristics

We consider ten different variables related to the funds themselves. These are: (i) last available
information about assets under management (AUM); (ii) inflows in the last twelve months (Inflows); (iii)
outflows in the last twelve months (Outflows); (iv) ratio between net funding (inflow - outflow) and AUM at
the beginning of the period (% Flows); (v) number of shareholders (# Shareholders); (vi) dummy variable
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indicating if the fund is allowed to take on leverage positions (leveraged); (vii) dummy variable indicating if
the shareholders are allowed to redeem the invested capital (Open); (viii) dummy indicating if the fund is
exclusive - can have only one investor (Exclusive); (ix) and the age of the fund (Age).

Analyzing the distributions of these variables from Table 1, we can see that the median fund has
close to ten million dollars in AUM and has experienced close to zero net flows in the sample. Furthermore,
it has just eight shareholders, whereas the mean number of shareholders in the sample is close to 1200,
indicating that few funds hold the majority of shareholders. This fact is also consistent with the incubation
bias. In addition, half of the funds can have leveraged positions, and a similar amount is Funds of Funds.
Moreover, the vast majority are open, and close to 10

3 XGBoost and other ML models

Table 2: Machine Learning Models Reference

Acronymous Algorithm Type Reference

XGB XGBoost Ensemble Chen and Guestrin (2016)
SVM Suport Vector Machine Other Cortes and Vapnik (1995)
RID Ridge Regresion Linear Hoerl and Kennard (1970)
RF Random Forest Ensemble Breiman (2001)
LR Linear Regression Linear -

LGB Light Gradient Boosting Ensemble Ke et al. (2017)
LAS LASSO Regression Linear Tibshirani (1996)
KNN K Nearest Neighborhood Other -
GB Gradient Boosting Ensemble Friedman (2001)
ET Extra Trees Ensemble Geurts et al. (2006)
EN Elastic Net Linear Zou and Hastie (2005)

DUM Dummy Other -
DT Decision Tree Other -

ADA Ada Boost Ensemble Freund and Schapire (1997)

Machine Learning models demand a considerable amount of data to be effective (Yao (2021)).
Because we consider an extended time frame in our analysis and the Brazilian capital market is still in
development, one might raise concerns about the validity of our approach. As we can see in Table 1, there
are, on average, more than 500 funds that meet our criteria. In fact, the month with the least amount of
data has 78 funds, but we only include these observations in the training data. With this concern dismissed,
we can present the ML models that will be considered.

For this paper, we will consider a total of fourteen machine learning algorithms that will be
grouped into two categories: linear and ensemble models. Algorithms that do not fit in either will be in a
separate category. Linear models are linear combinations of the independent variables, and ensemble models,
in turn, combine multiple other models in the prediction process.

3.1 Linear Models

The first linear model that we will consider is linear regression. This model will minimize the sum
of squared errors. Mathematically, the objective function is:
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β̂OLS = argmin
β∈Rk

(||y −Xβ||22) (1)

where ||.||2 denotes the ℓ2 norm.

The other linear models considered are regularized regression methods. In Ridge regression (Hoerl
and Kennard (1970)), for example, we abandon the requirement of an unbiased estimator and minimize the
residual sum of squares plus a penalty term on the betas. Mathematically,

β̂RID = argmin
β∈Rk

(||y −Xβ||22 + λ||β||22) (2)

LASSO (Tibshirani (1996)) is very similar to Ridge regression. However, while Ridge considers
the square of the coefficients, LASSO considers their absolute value. In addition, unlike Ridge, which can
only shrink a coefficient toward zero, LASSO can shrink the coefficient to 0, leading to a sparse solution.
Again, mathematically,

β̂LAS = argmin
β∈Rk

(||y −Xβ||22 + λ||β||1) (3)

where ||.||1 denotes the ℓ1 norm.

Finally, Elastic Net (Zou and Hastie (2005)) overcomes the LASSO’s limitations related to sit-
uations with many features and few observations. To do that, Elastic Net adds a quadratic part to the
LASSO penalty. It is also interesting to notice that the Elastic Net can be interpreted as a generalization
of the previously discussed linear algorithms. From Equation 4, we can see that if λ1 = λ2 = 0, we have the
classical linear regression objective function; if λ1 = 0, we have ridge regression; finally, if λ2 = 0, we have
LASSO.

β̂EN = argmin
β

(||y −Xβ||2 + λ1||β||1 + λ2||β||22) (4)

3.2 Others

Now we present a basic idea of the models that are not in either of the categories defined previously.
Readers interested in a deeper understanding of the models should reference the cited papers in Table 2.

First, the Support Vector Machine (Cortes and Vapnik (1995)) searches for a hyperplane in N-
dimensional space (N = number of features) with the maximum number of points.

In turn, the k-nearest neighbors algorithm receives an arbitrarily defined k parameter and the
training data and returns, for each prediction, the average of the k closest observations.

Next, as the name indicates, the decision tree model uses a tree-like decision model. The process
involves doing recursive binary splitting, in which every feature is considered, and the split (decision) is done
by minimizing a cost function (usually Gini or Entropy).

Finally, we analyze the dummy model. The idea is not to use this model for making predictions
but to have a baseline to compare the other models. What it does is real simple: its predictions are equal
to the average value of the dependent variable in the training data.
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3.3 Ensemble Methods

All the ensemble methods presented here will blend multiple models (usually weak learners) to
improve out-of-sample results.

Random Forest (Breiman (2001)), for example, will combine the output of various decision trees
to make a single prediction. Similar to RF, Extra Trees (Geurts et al. (2006)) will combine different decision
trees, but this model has an additional bias-variance analysis. In addition, AdaBoost (Freund and Schapire
(1997)) will follow the same procedure as a Random Forest does, but instead of using decision trees, it will
use a decision stump (a decision tree with a single stump).

Finally, in Gradient Boosting (Friedman (2001)), decision trees are generally also used. Today,
this algorithm is considered a generalization of AdaBoost. Light Gradient Boosting (Ke et al. (2017)) is a
more computationally efficient implementation of Gradient Boosting.

4 Results

4.1 Panel Regression

First, we present the results using traditional statistical tools. The pooled regression (Table 3)
shows that out of 35 estimated parameters, 23 are statistically significant at the 5% level. In addition, only
five return-based metrics were not significant, with Tracking Error’s coefficient being significant only for
the short-term momentum time frame. In contrast, most characteristics-based metrics were not statistically
significant, with outflows, the dummy indicating if the fund is open, and the age of the fund being an
exception.

Furthermore, by analyzing the coefficients, it is possible to see that there seems to be a positive
relationship between risk and abnormal return for shorter terms (CVar (STM), Beta-Market (STM), and
Beta-Market (STR)). This fact is consistent with the fundamentals of modern finance (Markowitz (1952);
Sharpe (1964)). However, when we analyze more extended periods (Mom.), the relation is inverted (CVar
(Mom.) and Beta-Market (Mom.)). This fact is consistent with a more recent literature that highlights the
out-performance of less risky assets compared to more risky ones (Blitz and Van Vliet (2007); Houweling
and van Zundert (2017)).

In addition, one might expect older funds to have more significant abnormal returns than newer
ones after controlling for AUM, due to decreasing returns to scale (Harvey and Liu (2021)). This is a
reasonable expectation since one can imagine that an older fund should have a more structured investment
process and a more experienced management team. However, our regression shows a negative relationship
between abnormal return and age. This phenomenon might be linked to career concerns, in which older
mutual fund managers tend to be less risk-averse than younger ones (Chevalier and Ellison (1999)). This,
in turn, might be detrimental to the fund’s performance (Blitz and Van Vliet (2007); Houweling and van
Zundert (2017)).

Finally, it is interesting to notice that out of three metrics related to fund flow, only outflow was
significant. The fact that inflow was not statistically significant goes against an extensive literature that
relates fund inflow to future performance (GRUBER (1996); Zheng (1999); KESWANI and STOLIN (2008)).

4.2 XGBoost Deciles

In this subsection, we explore how effectively the XGBoost model separated the equity mutual
funds with good from those with bad relative future performance. For that, for every month from February
2008 to December 2021, we rank the funds based on the predictions made by the XGBoost model. After
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Table 3: Pooled Regression

Dependent variable:

Abnormal Return

MIR (STM) −0.004∗∗∗ (0.001)
CVaR (STM) −0.027∗∗∗ (0.007)
Track Error (STM) −0.125∗∗∗ (0.032)
Alpha (STM) 0.760∗∗∗ (0.061)
Beta-Market (STM) 0.002∗∗∗ (0.0005)
Beta-Size (STM) 0.0001 (0.0003)
Beta-Value (STM) 0.004∗∗∗ (0.0003)
Beta-Momentum (STM) 0.003∗∗∗ (0.0003)
MIR (Mom.) 0.004 (0.003)
CVaR (Mom.) 0.060∗∗∗ (0.004)
Track Error (Mom.) −0.027 (0.032)
Alpha (Mom.) 3.034∗∗∗ (0.225)
Beta-Market (Mom.) −0.006∗∗∗ (0.001)
Beta-Size (Mom.) 0.004∗∗∗ (0.001)
Beta-Value (Mom.) −0.0001 (0.001)
Beta-Momentum (Mom.) −0.009∗∗∗ (0.001)
MIR (STR) 0.00002 (0.001)
CVaR (STR) 0.030∗∗∗ (0.007)
Track Error (STR) 0.112∗∗∗ (0.031)
Alpha (STR) 0.427∗∗∗ (0.060)
Beta-Market (STR) 0.002∗∗∗ (0.0005)
Beta-Size (STR) −0.001∗∗∗ (0.0003)
Beta-Value (STR) 0.002∗∗∗ (0.0003)
Beta-Momentum (STR) −0.001∗∗ (0.0003)
AUM −0.000 (0.000)
Inflows −0.000 (0.000)
Outflows 0.000∗∗ (0.000)
% Flow −0.000 (0.000)
# Shareholders −0.000 (0.000)
Leveraged −0.0002 (0.0002)
Open 0.002∗∗∗ (0.001)
FoF 0.0003 (0.0002)
Exclusive −0.00003 (0.0004)
Age −0.0001∗∗∗ (0.00002)
Constant 0.009∗∗∗ (0.001)

Observations 118,801
R2 0.015
Adjusted R2 0.015
Residual Std. Error 0.039 (df = 118766)
F Statistic 52.442∗∗∗ (df = 34; 118766)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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that, we divide the funds into deciles and simulate an equal-weighted portfolio that goes long in every fund
in each decile.

Table 4 Panel A allows us to see how effective the XGBoost model was in the task specified above.
First of all, we can see a perfectly monotonically relationship between the deciles order and the information
about risk and return, as measured by the annualized volatility and return: the first decile is less risky and
has a greater return than the second, while the second decile is less risky and has a greater return than the
third, and so on.

Furthermore, the magnitudes are also impressive. The first decile has an almost four times bigger
return than the last one. More impressive, the first decile also carries 15% less risk. For comparison reasons,
the Brazilian market index (IBrX), in the same period, had an annualized return of 5.47% and an annualized
volatility of 27.29%. This leads to the first decile’s modified Sharpe Ratio (Israelsen et al. (2005)) being
twelve times bigger than that of the market.

Vardharaj et al. (2004) points out that when an active manager takes positions that deviate a
lot from the benchmark, he or she will have significant active returns, either positive or negative. From the
results in Table 4, we can see precisely this parabolic relationship: the extreme deciles have higher tracking
errors while also having significant returns. In contrast, the deciles in the middle have lower tracking errors
and lower returns in absolute terms.

Moreover, another point of interest is the alpha of each decile. As expected, the biggest (numer-
ically) four-factor alpha is in the first decile, while the lowest is in the last decile. However, none of the
portfolios had an intercept statistically different from 0, considering a 5% significance level, and only the
tenth decile had a significant alpha at 10%. This suggests that none of the portfolios generated or destroyed
value. This fact may be (partially) explained by the fact that we work with after-fee returns (FAMA and
FRENCH (2010)).

After analyzing the deciles’ returns statistics, we now analyze the deciles’ average characteristics.
Table 4 Panel B shows that the funds that the model predicts higher abnormal returns tend to be, on
average, bigger (AUM), younger and have fewer shareholders.

Finally, one last fact deserves attention. As we show, the funds for which the model predicts
higher abnormal returns tend to be, on average, bigger (AUM) and have fewer shareholders. This seems to
the point towards a small group of more capitalized investors having more ability to discern funds with future
good and bad abnormal returns. In contrast, a group with a higher number of members but less capitalized
tends to be on the opposite side: they select the funds with lower abnormal future returns. Future works
could investigate if there is a correlation between these groups and institutional and retail investors.
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4.3 Comparison of machine learning algorithms

Before running any tests, we needed to choose a Machine Learning algorithm to o decrease the
likelihood of our results being biased (multiple testing, De Prado (2015)). We chose the XGBoost because of
its high performance in various Machine Learning problems and because it is computationally efficient. In
this section, we evaluate if we chose the best model and compare its performance against other ML models.

To accomplish that, we will rely upon Figure 1. The x-axis in this figure presents the Mean
Absolute Error (MAE) for the predictions made by each ML model. We use MAE instead of other metrics
like Mean Squared Error (MSE) because it is less sensitive to outliers.

The y-axis, in turn, presents information about the four-factor alpha for the Long & Short portfolio
based on the predictions of each ML algorithm. To construct this portfolio, every month, we sort the funds
based on the predictions made by each model. Then, we create an equal-weighted L&S portfolio that goes
long the 30% funds with the best predictions and short the 30% funds with the worse.

In addition, we scale the points based on the time (in seconds) it takes for the model to train on
the data from February 2005 to November 2021 and predict December 2021. We do that to understand the
trade-off between performance and cost. Finally, the points’ colors indicate the model type (refer to Table
2).

Before diving into the comparison, we point out the inverse relationship between the four-factor
alpha and MAE (Adjusted R2 of 33%). On average, the models with better (worse) predictions were also the
models that generated higher (lower) alphas. This may seem obvious, but it shows that a fund’s abnormal
return carries information about its four-factor alpha. If it did not, the MAE could be equal to zero (perfect
prediction), and the model’s ability to discern between good and bad managers would be low.

Even though the association between four-factor alpha and the MAE is clear, it is essential to
state that a low MAE does not mean that a model’s predictions will produce a high alpha. This becomes
clear when we analyze the performance of the dummy model, which predicts that every fund will have an
abnormal return equal to the mean abnormal return in the training data. In this case, because the model
predictions cannot distinguish funds, the ranking is random, and the portfolio generates a negative alpha.

A comparison between model types shows that the ensemble methods did remarkably well. Except
for Ada Boost, this group generated high alphas with a low MAE. The ensemble outperformed the linear
models, presenting additional evidence that nonlinear relationships and interactions between the variables
exist. However, in defense of the linear models, we must state that they delivered a good alpha based on
the computational power required to run them.

Finally, it is safe to say that the model that offered the best performance-cost relationship is the
LGB. This model generated the biggest alpha while being more than 150 times faster to train than the
second best performing algorithm (Gradient Boosting). XGBoost, our initial choice, did not perform as well
but could still differentiate good and bad equity mutual funds with high precision (see Table 4).

5 Conclusion

We contribute to the literature by presenting additional evidence of the ability of machine learning
models to discern between equity mutual funds that will outperform and underperform. Furthermore, we
tested many ML algorithms and showed that Light Gradient Boosting (LGB) was the model with the highest
capacity to select future winners and identify future losers.

Even though our previously selected model (XGBoost) did not perform as well, the predictions
made by this model allowed us to sort the funds in deciles in such a way that the first decile (higher predicted
abnormal return) outperformed the last decile (lower predicted abnormal return) by almost four times while

12



Figure 1: ML Model Comparison

“Annual. Alpha" is the Carhart (1997) alpha annualized over 252 days of the Long & Short portfolio.
“Execution time" is the time (seconds) for the model to train on the data from February 2005 to November
2021 and predict December 2021. Refer to Table 2 for the acronymous meanings.
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In addition, we could also provide additional evidence of the greater predictive power of Machine
Learning algorithms compared to the traditional statistical methods (linear models). The best ML (LGB)
model generated close to 45% more alpha when compared to the best linear model (Linear Regression) while
being computationally super efficient.

Finally, we present some possible future developments for interested researchers. First, we could
do some hyper-parameter tuning in a validation set before making the predictions. Second, we could use
more robust methods for outlier detection and treatment. Third, we could check how the alpha decays as
we make the holding period longer. Fourth, we could compare the equal-weighted portfolio to one that gives
more weight, whithin deciles, to the funds with a higher expected abnormal return (Kaniel et al. (2022)).
Finally, we could investigate what features are more critical for making good predictions.
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